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REPLY TO COMMENT

Reply to the comment by M Biagini on generalized density
functional theory

L Fritsche
Institut für Theoretische Physik der Technischen Universität Clausthal, Leibnizstrasse 10, D-
38678 Clausthal–Zellerfeld, Germany

Received 5 October 1995

Abstract. The two exchange–correlation potentials that derive from a variation of the
exchange–correlation energy for full and averaged electron–electron coupling strengths,
respectively, are shown to be identical, which invalidates the conclusions of M Biagini presented
in the preceding comment.

The essence of the preceding comment consists in the conclusion that the two exchange–
correlation potentialsV Frit

xc (r, σ ) andV K−S
xc (r, σ ) that are implicitly defined through

δExc =
∑

σ

∫
V Frit

xc (r, σ ) δρσ (r) d3r (1)

and

δExc =
∑

σ

∫
V K−S

xc (r, σ ) δρs(r) d3r (2)

respectively cannot be identical. The quantityĒxc denotes the exchange–correlation energy
averaged over the full range of the coupling strengthλ (0 6 λ 6 1), whereasExc is just
the exchange–correlation energy at full coupling strength(λ = 1). Apart from its apparent
plausibility, there seem to be reasons for Biagini’s statement being correct. Nevertheless,
the two potentials do, in fact, agree, as will be proven in the following.

I first want to justify my notation concerning the exchange–correlation energyExc. If
one subdivides the pair densityρ2nσ ′σ (r′, r) in some eigenstate9n of theN -electron system
according to

ρ2nσ ′σ (r′, r) = ρnσ ′(r′)ρnσ (r) + ρ̃2nσ ′σ (r′, r) (3)

the electron–electron interaction energy can be cast as

〈Ve−e〉(n) = V (n)
c + E(n)

xc (4)

where

V (n)
c = 1

2

∫∫
ρn(r

′)ρn(r)

|r′ − r| d3r ′ d3r (5)

and

E(n)
xc = 1

2

∑
σ ′,σ

∫∫
ρ̃2nσ ′σ (r′, r)

|r′ − r| d3r ′ d3r (6)

0953-8984/96/132237+06$19.50c© 1996 IOP Publishing Ltd 2237



2238 L Fritsche

with ρn(r) denoting the total charge density of the system in that eigenstate. SinceV (n)
c

is commonly referred to as the ‘classical Coulomb interaction energy’,E(n)
xc includes the

effects of exchange and correlation and should therefore be termed accordingly. The above
subdivision of〈Ve−e〉(n) is a matter of principle and should not depend on specific aspects
of density functional theory. Within the framework of the latter one performs the familiar
thought experiment in which one gradually scales down the electron–electron interaction by
a factorλ and simultaneously turns on spin-dependent potentialsV̂ext (λ, r, σ ) that ensure the
conservation of the spin-resolved charge densitiesρnσ (r). TheN -electron Hamiltonian that
refers to the situation for 06 λ 6 1 leads to aλ-dependence of thenth eigenstate and, as a
result, to aλ-dependent pair density. One can then define an average exchange–correlation
energyĒxc by replacingρ̃2nσ ′σ (r′, r) in equation (6) with itsλ-averaged analogue. As can
be shown by using the Hellmann–Feynman theorem, the following equation holds:

EFrit
n = EK−S

n (7)

where

EFrit
n = 〈Te−e〉(n) + 〈Vext 〉(n) + V (n)

c + E(n)
xc (8)

and

EK−S
n = 〈T0〉(n) + 〈Vext 〉(n) + V (n)

c + Ē(n)
xc (9)

with 〈T0〉(n) denoting the kinetic energy of the non-interactingN -electron system having
the same densitiesρnσ (r) as the original one whose kinetic energy is denoted by〈Te−e〉(n).
Furthermore, we have abbreviated the interaction with the external (nuclear) potential as
〈Vext 〉(n), i.e.

〈Vext 〉(n) =
∫

ρn(r)Vext (r) d3r.

In the following we shall confine ourselves to discussing the ground state(n = 0) only
since the essential claim of Biagini’s paper consists in stating a fundamental contradiction
between my approach and the Hohenberg–Kohn–Sham theory of theN -electron ground
state.

We subject the ground-state wavefunction90 to a slight distortion and write the new
wavefunction in the form

9 ′
0 = 90 + η0 δ90 (10)

with η0 being a positive quantity that is small compared to unity, andδ90 just some function
normalized to unity and orthogonal to90.

Since 90 can uniquely be mapped onto a Slater determinant80 made up of theN
lowest-lying Kohn–Sham orbitalsψiσ (r), 90 can generally be cast as

90 = 80 + 9̃0 (11)

where9̃0 = 9̃0(x, x2, . . . ,xN) is non-orthogonal to80 and has the property

N

∫ [
8∗

09̃0 + 809̃
∗
0 + |9̃0|2

]
d4x2 . . . d4xN = ρ̃0σ (r) = 0.

That is, 9̃0 does not contribute to the one-particle densitiesρ0σ (r). (Note that we have
abbreviatedr together with the spin variableσ (= ±1) as x, so

∫ · · · d4x refers to a
real-space integration including a spin summation.) If9 ′

0 is generated as a ground-state
wavefunction of a perturbed Hamiltonian, we can again partition this function according to
equation (11):

9 ′
0 = 8′

0 + 9̃ ′
0 (12)
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where8′
0 is now made up of orbitalsψ′

iσ (r) which we write in the form

ψ′
iσ (r) = ψiσ (r) + δψiσ (r). (13)

From equation (10) we have

δρ0σ (r) = η0N

∫ [
9∗

0δ90 + CC
]

d4x2 . . . d4xN .

That is,

δρ0σ (r) ∝ η0. (14)

On the other hand, it follows from equation (13) and the properties of8′
0 that

δρ0σ (r) =
(Nσ )∑

i

[
ψ∗

iσ δψiσ + CC
]
. (15)

Similarly, we obtain for the changes ofEFrit
0 and EK−S

0 associated with the distortion
90 → 9 ′

0

δEFrit
0 =

∑
σ

(Nσ )∑
i

[∫
δψ∗

iσ (r)

(
−1

2
∇2 + Vext (r) + VH(r) + V Frit

xc (r, σ )

)
× ψiσ (r) d3r + CC

]
+ δT̃0 (16)

and

δEK−S
0 =

∑
σ

(Nσ )∑
i

[∫
δψ∗

iσ (r)

(
−1

2
∇2 + Vext (r) + VH(r) + V K−S

xc (r, σ )

)
× ψiσ (r) d3r + CC

]
(17)

whereVH(r) denotes the familiar Hartree potential, andT̃0 in equation (16) is defined by

T̃0 = 〈Te−e〉(0) − 〈T0〉(0)

which is generally a positive quantity. (See, e.g., Fritsche (1986).) In deriving equations
(16) and (17) we have made use of the definitions (1) and (2).

We now consider the changesδEFrit
0 and δEK−S

0 associated with a subset of distorted
functions9 ′

0 that leaveT̃0 unchanged. (As regards this point, see Fritsche (1993).) This can
be achieved by generating eigenfunctions9 ′

0 in a perturbed potentialVext (r) + γ vPert (r)

whereγ is some dimensionless strength parameter. As we changeγ we simultaneously
change the electron–electron coupling strengthλ appropriately so thatδT̃0 = 0. (Note that
T̃0 increases (at constantγ ) asλ becomes larger, but decreases (at fixedλ) when the nuclear
potentials are made more attractive.) For this subset of distorted functions expressions (16)
and (17) become formally identical then, except that equation (16) containsV Frit

xc (r, σ ) in
place ofV K−S

xc (r, σ ) in equation (17). By construction, the functionsψiσ (r) in equation
(17) guarantee that

δEK−S
0 = 0 (18)
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to first order inη0. If we rewrite equation (16) for the subset of functions (defined by
δT̃0 = 0) in the form

δEFrit
0 =

∑
σ

(Nσ )∑
i

[∫
δψ∗

iσ (r)

(
−1

2
∇2 + Vext (r) + VH(r) + V K−S

xc (r, σ )

)
× ψiσ (r) d3r + CC

]
+

∑
σ

∫ (
V Frit

xc (r, σ ) − V K−S
xc (r, σ )

)
δρ0σ (r) d3r

and use equation (18) we arrive at

δEFrit
0 =

∑
σ

∫ (
V Frit

xc (r, σ ) − V K−S
xc (r, σ )

)
δρ0σ (r) d3r.

SinceEK−S
0 andEFrit

0 are alternative expressions for the same quantity,δEFrit
0 must also

have the property

δEFrit
0 = 0 (19)

to first order inη0. Because of equation (14) it follows then that

V Frit
xc (r, σ ) = V K−S

xc (r, σ ) (20)

as opposed to what is claimed in Biagini’s paper.
The salient point of the above derivation consists in the observation thatδT̃0 can be made

zero to first order inη0 for an infinite subset of functions9 ′
0. We can rewrite expression

(8) in the form

EFrit
0 = EK−S

0 + (Exc − Ēxc) + T̃0. (21)

Since we have quite generally

δEFrit
0 ∝ η2

0

and

δEK−S
0 ∝ η2

0

to lowest order inη0, we can see from equations (1), (2), (20) and (21) thatδT̃0 will in
general be proportional toη2

0 to lowest order inη0 for functions 9 ′
0 that do not belong

to the above subset. The Kohn–Sham (KS) equations result from the requirement that the
changes of the total energy vanish to first order inη0, and hence the occurrence of a finite
δT̃0 ∝ η2

0 has no effect on the final form of the KS equations.
In contradiction to Biagini’s claim we thus arrive at the conclusion that the finiteness

of T̃0 and its actual dependence onρ0σ (r) do not give rise to a difference between the
potentialsV Frit

xc (r, σ ) andV K−S
xc (r, σ ).

Biagini’s conclusion rests on his equation (15) which in the present notation reads

V Frit
xc (r, σ ) = V K−S

xc (r, σ ) + δT̃0[ρ]

δρ0σ (r)
. (22)

I have repeatedly pointed out (see, e.g., Fritsche 1995) that functional derivatives such as
those on the right-hand side of this equation are mathematically meaningless in the context
of density functional theory. This becomes immediately obvious when one writes down its
definition more explicitly (see, e.g., Gelfand and Fomin 1963):

δT̃0[ρ]

δρ0σ (r)
= lim

τ→0|δρ0σ (r)|max→0

[(
T̃0[ρ0σ (r) + δρ0σ (r)] − T̃0[ρ0σ (r)]

) /∫
τ(r)

δρ0σ (r′) d3r ′
]

(23)
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where δρ0σ (r′) is different from zero only within the volumeτ around a fixed pointr.
(Note that it is inadmissible to allowδρ0σ (r) to be also finite outsideτ , because the integral
would then only contain part of the information onδρ0σ (r) whereasT̃0[ρ0σ (r) + δρ0σ (r)]
contains inevitably the full information, and hence one could not expect the quotient on the
right to converge to a unique function ofr.)

Since ∫ [
ρ0σ (r′) + δρ0σ (r′)

]
d3r ′ =

∫
ρ0σ (r′) d3r ′ = Nσ

we have ∫
τ(r)

ρ0σ (r′) d3r ′ = 0. (24)

Hence, the denominator on the right-hand side of equation (23) is always exactly zero as
a result of the wavefunction representability of the original and distorted charge densities.
Biagini implies without justification that the additional function on the right-hand side of
equation (22) exists and is non-vanishing. In contrast, our considerations lead to

δT̃0 ∝ η2
0

and

δρ0σ ∝ η0

so we have

lim
η0→0

δT̃0

δρ0σ

= 0.

The above objection against functional derivatives applies to the standard definition of
V K−S

xc (r, σ ) as well. As follows from the derivation of the KS equations by varying the
total energy expression (9), one needsδĒ(0)

xc in the form

δĒ(0)
xc =

∑
σ

∫
V K−S

xc (r′, σ ) δρ0σ (r′) d3r ′. (25)

If one assumesδρ0σ (r′) for some spin directionσ to be non-vanishing only within a volume
τ(r) and to be identically zero for the other spin direction, equation (25) reduces to

δĒ(0)
xc =

∫
τ(r)

V K−S
xc (r′, σ ) δρ0σ (r′) d3r ′. (26)

In a case whereδρ0σ (r′) would not integrate to zero withinτ , equation (26) could be recast
as

δĒ(0)
xc = V K−S

xc (r̄, σ )

∫
τ(r)

δρ0σ (r′) d3r ′ (27)

where r̄ denotes an appropriately chosen point within the volumeτ(r). One could then
divide this equation by the integral on the right-hand side and letτ go to zero. The result
would, in fact, be identical with the standard definition ofV K−S

xc (r, σ ). However, since
δρ0σ (r′) does integrate to zero, one cannot define a pointr because it is generally defined
through

V K−S
xc (r̄, σ ) =

∫
τ(r)

V K−S
xc (r′, σ ) δρ0σ (r′) d3r ′

/∫
τ(r)

δρ0σ (r′) d3r ′

where the denominator on the right-hand side equals zero.
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One is hence led to conclude thatV K−S
xc (r′, σ ) cannot be defined by the functional

derivative of Ēxc, but should rather be defined by equation (26), which, however, is not
justifiable within conventional density functional theory. SinceδĒ(0)

xc is primarily connected
to δ ¯̃ρ20σ ′σ (r′, r), it is not at all clear whether there is such a potentialV K−S

xc (r′, σ )

that interconnects the correlated pair-density variation withδρ0σ (r′). Also in this respect
Biagini’s comment gives the rather misleading impression that this problem would solely
be a matter of concern within my generalized density functional scheme. In completing
the list of debatable statements made in Biagini’s comment, I want to emphasize that my
approach to constructingV (n)

xc (r, σ ) from functions0n(x
′′, x′, x) which Biagini is referring

to, is very explicitly dealt with in a recent article (Fritsche 1995) where I have described a
possible way of proving the existence of such functions.
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